Сейчас настало изумительное время: все, что мы почитали знанием, лопнуло, точно мыльный пузырь.
Том Стоппард, «Аркадия», 1993
Два миллиона лет назад мы, люди, совершили первый новаторский прорыв – поняли, как превращать камень в режущий инструмент. То был наш первый опыт приспособления природы под свои нужды, и практически нет второго открытия за всю историю, равного по величию озарения или приведшего бы к более масштабным переменам в нашей жизни. Но сто лет назад все же было сделано открытие, равное по мощи и значимости. Как и применение камня, оно касалось кое-чего столь же вездесущего, такого, что было у нас прямо перед глазами, хоть и незримо для них, от начала времен. Я говорю об атоме – и о диковинных квантовых законах, которые им правят.
Теория атома, очевидно, – ключ к пониманию химии, но прозрения, сопровождавшие изучение атомного мира, перевернули и физику с биологией. Ученые, постигнув устройство атома и взявшись разбираться в его законах, обрели вид ение, преобразившее общество, и пролили свет на предметы в диапазоне от фундаментальных сил и частиц природы до структуры ДНК и биохимии жизни, попутно породив новые технологические приемы, придавшие форму современной жизни.
Принято говорить о технологической революции, компьютерной революции, информационной революции и ядерном веке, однако в конечном счете все сводится к одному: превращению атома в инструмент. Ныне наша способность манипулировать атомами такова, что нам доступно что угодно – от телевидения до оптоволоконных кабелей, проводящих сигнал к телеэкрану, от телефонов до компьютеров, от интернет-технологий до приборов МРТ. Мы применяем наше знание атома даже в освещении: наши флуоресцентные лампы, к примеру, испускают свет, потому что электроны в атомах переходят в возбужденное состояние под действием электрического тока, а затем совершают «квантовый скачок» к более низким энергетическим состояниям. В наши дни даже самые будничные приспособления – духовки, часы, термостаты – содержат комплектующие, которые удалось создать лишь благодаря пониманию квантовой природы атома.
Великая революция, приведшая нас к пониманию устройства атома и квантовых законов атомного мира, произошла в начале ХХ века. За годы до этого было замечено: то, что мы сегодня именуем «классической физикой» (физикой, основанной на Ньютоновых законах движения, а не на квантовых), не может объяснить явление, именуемое «излучением абсолютно черного тела», которое, как нам теперь известно, можно растолковать, только зная квантовые свойства атома. Эта отдельная немощь теории Ньютона в глаза бросилась не сразу. Наоборот – считалось, что физики просто не понимают, как именно применить Ньютонову физику к этой задаче, а когда поймут, излучение абсолютно черного тела станет ясно в пределах классической теории. Но физики постепенно открыли и другие атомные явления, которые тоже не получалось объяснить с позиций Ньютоновой физики, и в конце концов стало ясно, что от большей части Ньютоновых взглядов придется отказаться – так же, как перед этим вышло с Аристотелем.
Квантовая революция – это двадцать лет борьбы. То, что этот переворот осуществился всего за пару десятилетий, а не за века и эпохи, – заслуга несопоставимо большего числа ученых, трудившихся над решением этой задачи, а не показатель того, что это новое мировоззрение было так просто принять. Вообще-то новая философия, лежащая в основании квантовой теории, – кое-где до сих пор тема оживленных дискуссий. Ибо картина мира, возникшая за те двадцать лет, – ересь для всех, кто, подобно Эйнштейну, презирает роль случайности в исходе событий или верит в обычные законы причины и следствия.
Заковыристой темой причинности в квантовой вселенной не занимались вплоть до самого конца квантовой революции, и до этого мы еще доберемся. Но был и другой вопрос – из тех, что одновременно и философские, и практические, – он издавна сбивал с толку: атомы слишком малы, их не разглядеть и даже не измерить по одиночке – ученые до второй половины ХХ века даже «фотокарточку» молекулы-то не видали. И потому в веке XIX-м любая экспериментальная работа, связанная с атомами, сводилась лишь к описанию явлений, обусловленных поведением колоссального количества этих малюсеньких невидимых предметов. Имеет ли смысл вообще считать незримые предметы существующими в действительности?
Вопреки работе Дальтона, посвященной атому, мало кто из ученых так думал. Даже химики, применявшие понятие атома из-за того, что с ним делались понятнее явления, которые можно было наблюдать и измерять, склонны были рассматривать его просто как рабочую гипотезу: химические реакции протекают так, будто при этом происходит перетасовывание атомов, входящих в состав веществ. Другие считали атомы понятием скорее философским, нежели научным, и стремились отказаться от него вообще. Немецкий химик Вильгельм Фридрих Оствальд говорил: атомы – «гипотетические фигуры, не ведущие ни к каким доказуемым заключениям».
Нерешительность эта объяснима: пути науки и философии за века разошлись в точности на том, должны ли представления о природе быть поддержаны экспериментом и наблюдением. Настаивая на проверяемости как критерии принятия какой бы то ни было гипотезы, ученые смогли отрясти старые убеждения либо как не проверяемые, либо, как случилось со многими теориями Аристотеля, неверными. Их место заняли математические законы, позволявшие получать точные количественные прогнозы исходов наблюдаемых процессов.