Для небольших углов наклона в эксперименте Галилея все происходило довольно медленно, и данные добывались без особых усилий. Он заметил, что при малых углах расстояние, пройденное шаром, всегда пропорционально квадрату времени в пути. Можно математически доказать: это значит, что шар набирает скорость равномерно, то есть равномерно ускоряется. Более того, Галилей отметил и то, что скорость падения шара не зависит от его массы.
Поразительно было другое: это утверждение оставалось верным и когда пандус наклоняли под большими углами; каким бы ни был угол наклона, расстояние, пройденное шаром, не зависело от массы шара и было пропорционально квадрату времени, потребного для качения. Если это верно для наклона в сорок, пятьдесят, шестьдесят или даже семьдесят градусов, чего б и не девяносто? И вот тут-то Галилей приводит очень современное рассуждение: он говорит, что его наблюдения за шаром, скатывающимся по наклонной плоскости, должны быть верны и для свободного падения, которое можно рассматривать как «предельный случай» наклона плоскости под прямым углом. Иными словами, он рассудил гипотетически, что, если приподнять плоскость вплоть до вертикального положения, и шар при этом фактически падал, а не катился, скорость он все равно будет набирать равномерно, а это означает, что усмотренная им для случая наклонных плоскостей закономерность распространяется и на свободное падение.
Так Галилей заместил Аристотелев закон свободного падения своим собственным. Аристотель говорил, что все тела падают со скоростью, пропорциональной их весу, но Галилей, постулируя идеальный мир, в котором фундаментальные законы природы являют себя наблюдателю, пришел к другому выводу: в отсутствие сопротивления среды – к примеру, воздуха, – все тела падают с одним и тем же постоянным ускорением.
Помимо склонности к математике Галилей тяготел и к абстрактному мышлению. И до того оно было у него развито, что ученый временами любил обдумывать что-нибудь целиком и полностью умозрительно. Не-ученые называют это фантазиями, ученые – мысленными экспериментами, по крайней мере – когда говорят о физике. Хорошо в мысленных экспериментах то, что их можно проводить целиком у себя в голове и не возиться со сборкой работающих приборов, но с их помощью проверять логические следствия тех или иных соображений. Таким манером, потопив Аристотелеву теорию свободного падения посредством практических экспериментов с наклонными плоскостями, Галилей, применив мысленный эксперимент, присоединился к обсуждению одного из предметов Аристотелевой физики, подвергшегося острейшей критике, а именно – движения снарядов.
Что движет снарядом после того, как к нему приложена начальная сила? Аристотель предположил, что его толкают частицы воздуха, устремляющиеся вслед снаряду, но даже сам он к своему объяснению относился критически, и мы в этом уже убедились.
Галилей взялся разбираться с этой темой, вообразив корабль в море: в трюме моряки играют в салки, летают бабочки, в склянке на столе плавают рыбки, из бутылки капает вода. Он «заметил», что все это происходит одинаково независимо от того, движется корабль равномерно или же покоится. Галилей заключил, что, поскольку все на корабле движется вместе с ним, движение корабля должно «запечатлеваться» на предметах у него на борту, и когда корабль начинает двигаться, его движение становится чем-то вроде подложки для всего, что на нем находится. Может ли движение снаряда быть на нем «запечатлено»? Может ли это быть силой, поддерживающей полет пушечного ядра?
Размышления Галилея привели его к глубочайшему выводу – и к еще одному разрыву с Аристотелевой физикой. Отвергнув утверждение Аристотеля о том, что снаряду для движения нужна причина – сила, Галилей заявил, что все тела, находящиеся в равномерном движении, обыкновенно продолжают двигаться равномерно и дальше, в точности как тела в покое покоятся и далее.
Под «равномерным» Галилей понимал движение по прямой и с постоянной скоростью. Положение «покоя» – попросту пример равномерного движения, в котором скорость равна нулю. Наблюдение Галилея стало называться законом инерции. Ньютон позднее видоизменил его и сделал первым законом движения.
Через несколько страниц после формулировки закона Ньютон добавляет, что открыл его Галилей – редкий случай, когда Ньютон вообще отдавал кому-нибудь должное.
На основании рассказанного мной о Галилее отцу, он, любивший сравнивать любого значимого человека с какой-нибудь фигурой в иудейской истории, назвал Галилея Моисеем науки. Он сказал, это потому, что Галилей вывел науку из Аристотелевой пустыни к земле обетованной. Сравнение это тем более действительно вот из-за чего: подобно Моисею, сам Галилей до обетованной земли не добрался – не выделил гравитацию как силу, не смог описать ее математически, чего пришлось ждать до Ньютона, и по-прежнему цеплялся за некоторые Аристотелевы взгляды. К примеру, Галилей верил в некое «естественное движение», которое не равномерно, однако не требует силы для того, чтобы начаться: движение вокруг центра Земли. Галилей, судя по всему, думал, что это разновидность естественного движения, позволяющего телам никуда не деваться с вращающейся планеты.
Чтобы родилась настоящая наука движения, необходимо было отринуть и эти пережитки Аристотелевой системы взглядов. По этим причинам один историк писал о Галилеевых представлениях о природе как о «невозможной амальгаме несовместимых элементов, порожденной взаимоисключающими мировоззрениями, меж которых он оказался».